Experimental Characterization of Adsorption and Transport Properties for Advanced Thermo-Adsorptive Batteries
Author(s)
Kim, Hyunho; Yang, Sungwoo; Narayanan, Shankar; McKay, Ian; Wang, Evelyn
Downloadv08ct09a070-imece2013-65490.pdf (1.201Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Thermal energy storage has received significant interest for delivering both heating and cooling in electric vehicles, to minimize the use of the on-board electric batteries for heating, ventilation and air-conditioning (HVAC). An advanced thermoadsorptive battery (ATB) is currently being developed, to provide both heating and cooling for an electric vehicle. We present a detailed thermophysical and physicochemical characterization of adsorptive materials for the development of the ATB. We discuss the feasibility of using contemporary adsorptive materials, such as zeolite 13X, by carrying out a detailed experimental characterization. In this study, zeolite 13X is combined with aluminum hydroxide (Al(OH)3) as a binder to improve the thermal conductivity. We also investigate the effect of densification on the overall transport characteristics of the adsorbent-binder composite material. Accordingly, the effective thermal conductivity, surface area, adsorption capacity and surface chemistry were characterized using the laser flash technique, surface sorption analyzer, thermogravimetric analyzer, and x-ray scattering technique. Thermal conductivity predictions of both zeolite 13X and its combination with the binder were made with existing conductivity models. Thermal conductivity in excess of 0.4 W/mK was achieved with the addition of 6.4 wt.% of Al(OH)3. However, a 10.6 % decrease in adsorption capacity was also observed. The experimental characterization presented herein is an essential step towards the development of the proposed ATB for next-generation electric vehicles. Topics: Experimental characterization
Date issued
2013-11Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition
Publisher
ASME International
Citation
Kim, Hyunho, Sungwoo Yang, Shankar Narayanan, Ian McKay, and Evelyn N. Wang. “Experimental Characterization of Adsorption and Transport Properties for Advanced Thermo-Adsorptive Batteries.” Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, Volume 8C: Heat Transfer and Thermal Engineering, 15-21 November, 2013, San Diego, California, USA, ASME, 2013. © 2013 by ASME
Version: Final published version
ISBN
978-0-7918-5636-9