MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LesionAir: An Automated, Low-Cost Vision-Based Skin Cancer Diagnostic Tool

Author(s)
Carlson, Jay D.; Perez, Edward; Wortman, Tyler D.; Slocum Jr., Alexander H
Thumbnail
Downloadmed_012_02_021001.pdf (2.166Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Current techniques for diagnosing skin cancer lack specificity and sensitivity, resulting in unnecessary biopsies and missed diagnoses. Automating tissue palpation and morphology quantification will result in a repeatable, objective process. LesionAir is a low-cost skin cancer diagnostic tool that measures the full-field compliance of tissue by applying a vacuum force and measuring the precise deflection using structured light three-dimensional (3D) reconstruction. The technology was tested in a benchtop setting on phantom skin and in a small clinical study. LesionAir has been shown to measure deflection with a 0.085mm root-mean-square (RMS) error and measured the stiffness of phantom tissue to within 20% of finite element analysis (FEA) predictions. After biopsy and analysis, a dermatopathologist confirmed the diagnosis of skin cancer in tissue that LesionAir identified as noticeably stiffer and the regions of this stiffer tissue aligned with the bounds of the lesion. A longitudinal, full-scale study is required to determine the clinical efficacy of the device. This technology shows initial promise as a low-cost tool that could rapidly identify and diagnose skin cancer.
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/121052
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Medical Devices
Publisher
ASME International
Citation
Wortman, Tyler D., Jay D. Carlson, Edward Perez, and Alexander H. Slocum. “LesionAir: An Automated, Low-Cost Vision-Based Skin Cancer Diagnostic Tool.” Journal of Medical Devices 12, no. 2 (March 5, 2018): 021001. © 2018 by ASME
Version: Final published version
ISSN
1932-6181

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.