Show simple item record

dc.contributor.authorLubin, Miles C
dc.contributor.authorZadik, Ilias
dc.contributor.authorVielma, Juan Pablo
dc.date.accessioned2019-03-22T18:19:07Z
dc.date.available2019-03-22T18:19:07Z
dc.date.issued2017-05
dc.date.submitted2017-03
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/121062
dc.description.abstractWe consider the question of which nonconvex sets can be represented exactly as the feasible sets of mixed-integer convex optimization problems. We state the first complete characterization for the case when the number of possible integer assignments is finite. We develop a characterization for the more general case of unbounded integer variables together with a simple necessary condition for representability which we use to prove the first known negative results. Finally, we study representability of subsets of the natural numbers, developing insight towards a more complete understanding of what modeling power can be gained by using convex sets instead of polyhedral sets; the latter case has been completely characterized in the context of mixed-integer linear optimization.en_US
dc.description.sponsorshipUnited States. National Science Foundation. (Grant CMMI-1351619)en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-59250-3_32en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMixed-Integer Convex Representabilityen_US
dc.typeArticleen_US
dc.identifier.citationLubin, Miles et al. “Mixed-Integer Convex Representability.” International Conference on Integer Programming and Combinatorial Optimization (2017): 392–404. doi:10.1007/978-3-319-59250-3_32. © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorLubin, Miles C
dc.contributor.mitauthorZadik, Ilias
dc.contributor.mitauthorVielma Centeno, Juan Pablo
dc.relation.journalInternational Conference on Integer Programming and Combinatorial Optimizationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-03-05T17:03:39Z
dspace.orderedauthorsLubin, Miles; Zadik, Ilias; Vielma, Juan Pabloen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6781-9633
dc.identifier.orcidhttps://orcid.org/0000-0002-8286-881X
dc.identifier.orcidhttps://orcid.org/0000-0003-4335-7248
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record