dc.contributor.author | Vielma Centeno, Juan Pablo | |
dc.date.accessioned | 2019-03-22T18:27:51Z | |
dc.date.available | 2019-03-22T18:27:51Z | |
dc.date.issued | 2017-11 | |
dc.date.submitted | 2017-04 | |
dc.identifier.issn | 0025-1909 | |
dc.identifier.issn | 1526-5501 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/121064 | |
dc.description.abstract | It is well known that selecting a good Mixed Integer Programming (MIP) formulation is crucial for an effective solution with state-of-the art solvers. While best practices and guidelines for constructing good formulations abound, there is rarely a systematic construction leading to the best possible formulation. We introduce embedding formulations and complexity as a new MIP formulation paradigm for systematically constructing formulations for disjunctive constraints that are optimal with respect to size. More specifically,
they yield the smallest possible ideal formulation (i.e. one whose LP relaxation has integral extreme points) among all formulations that only use 0-1 auxiliary variables. We use the paradigm to characterize optimal
formulations for SOS2 constraints and certain piecewise linear functions of two variables. We also show that the resulting formulations can provide a significant computational advantage over all known formulations
for piecewise linear functions. | en_US |
dc.description.sponsorship | United States. National Science Foundation. (Grant CMMI-13516) | en_US |
dc.publisher | Institute for Operations Research and the Management Sciences (INFORMS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1287/MNSC.2017.2856 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Embedding Formulations and Complexity for Unions of Polyhedra | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Vielma, Juan Pablo. “Embedding Formulations and Complexity for Unions of Polyhedra.” Management Science 64, 10 (October 2018): 4721–4734. doi:10.1287/mnsc.2017.2856. © 2017 The Author | en_US |
dc.contributor.department | Sloan School of Management | en_US |
dc.contributor.mitauthor | Vielma Centeno, Juan Pablo | |
dc.relation.journal | Management Science | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-03-05T16:57:10Z | |
dspace.orderedauthors | Vielma, Juan Pablo | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4335-7248 | |
mit.license | OPEN_ACCESS_POLICY | en_US |