Show simple item record

dc.contributor.authorRiva, Michele
dc.contributor.authorKubicek, Markus
dc.contributor.authorHao, Xianfeng
dc.contributor.authorFranceschi, Giada
dc.contributor.authorGerhold, Stefan
dc.contributor.authorHutter, Herbert
dc.contributor.authorFleig, Juergen
dc.contributor.authorFranchini, Cesare
dc.contributor.authorDiebold, Ulrike
dc.contributor.authorSchmid, Michael Sebasti
dc.contributor.authorYildiz, Bilge
dc.date.accessioned2019-03-25T14:13:08Z
dc.date.available2019-03-25T14:13:08Z
dc.date.issued2018-09
dc.date.submitted2018-06
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/121072
dc.description.abstractPerovskite oxide surfaces catalyze oxygen exchange reactions that are crucial for fuel cells, electrolyzers, and thermochemical fuel synthesis. Here, by bridging the gap between surface analysis with atomic resolution and oxygen exchange kinetics measurements, we demonstrate how the exact surface atomic structure can determine the reactivity for oxygen exchange reactions on a model perovskite oxide. Two precisely controlled surface reconstructions with (4 × 1) and (2 × 5) symmetry on 0.5 wt.% Nb-doped SrTiO3(110) were subjected to isotopically labeled oxygen exchange at 450 °C. The oxygen incorporation rate is three times higher on the (4 × 1) surface phase compared to the (2 × 5). Common models of surface reactivity based on the availability of oxygen vacancies or on the ease of electron transfer cannot account for this difference. We propose a structure-driven oxygen exchange mechanism, relying on the flexibility of the surface coordination polyhedra that transform upon dissociation of oxygen molecules.en_US
dc.description.sponsorshipAustrian Science Fund (SFB “ Functional Oxide Surfaces and Interfaces ” - FOXSI, Project F 45)en_US
dc.description.sponsorshipEuropean Research Council Advanced Grant (“OxideSurfaces” (Project ERC-2011-ADG_20110209))en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Materials Research (CAREER Award Grant No. 1055583)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-05685-5en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleInfluence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxideen_US
dc.typeArticleen_US
dc.identifier.citationRiva, Michele, Markus Kubicek, Xianfeng Hao, Giada Franceschi, Stefan Gerhold, Michael Schmid, Herbert Hutter, et al. “Influence of Surface Atomic Structure Demonstrated on Oxygen Incorporation Mechanism at a Model Perovskite Oxide.” Nature Communications 9, no. 1 (September 13, 2018).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorSchmid, Michael Sebasti
dc.contributor.mitauthorYildiz, Bilge
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-04T14:23:45Z
dspace.orderedauthorsRiva, Michele; Kubicek, Markus; Hao, Xianfeng; Franceschi, Giada; Gerhold, Stefan; Schmid, Michael; Hutter, Herbert; Fleig, Juergen; Franchini, Cesare; Yildiz, Bilge; Diebold, Ulrikeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5096-5236
dc.identifier.orcidhttps://orcid.org/0000-0002-2688-5666
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record