dc.contributor.author | Hassani Gangaraj, Seyyed Mostafa | |
dc.contributor.author | Veysset, David Georges | |
dc.contributor.author | Nelson, Keith Adam | |
dc.contributor.author | Schuh, Christopher A | |
dc.date.accessioned | 2019-03-25T14:53:19Z | |
dc.date.available | 2019-03-25T14:53:19Z | |
dc.date.issued | 2018-11 | |
dc.date.submitted | 2018-06 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/121074 | |
dc.description.abstract | Impact-induced erosion is the ablation of matter caused by being physically struck by another object. While this phenomenon is known, it is empirically challenging to study mechanistically because of the short timescales and small length scales involved. Here, we resolve supersonic impact erosion in situ with micrometer- and nanosecond-level spatiotemporal resolution. We show, in real time, how metallic microparticles (~10-μm) cross from the regimes of rebound and bonding to the more extreme regime that involves erosion. We find that erosion in normal impact of ductile metallic materials is melt-driven, and establish a mechanistic framework to predict the erosion velocity. | en_US |
dc.description.sponsorship | United States. Department of Energy. Division of Materials Sciences and Engineering (Award DE-SC0018091) | en_US |
dc.description.sponsorship | United States. Army Research Office (Contract No. W911NF-13-D-0001) | en_US |
dc.description.sponsorship | United States. Army Research Office (Contract No. (W911NF-18-2-0048) | en_US |
dc.description.sponsorship | United States. Office of Naval Research. Defense University Research Instrumentation Program (Grant No. N00014-13-1-0676) | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/s41467-018-07509-y | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Nature | en_US |
dc.title | Melt-driven erosion in microparticle impact | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hassani-Gangaraj, Mostafa, David Veysset, Keith A. Nelson and Christopher A. Svhuh. "Melt-driven erosion in microparticle impact." Nature Communications (2018) 9:5077. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.mitauthor | Hassani Gangaraj, Seyyed Mostafa | |
dc.contributor.mitauthor | Veysset, David Georges | |
dc.contributor.mitauthor | Nelson, Keith Adam | |
dc.contributor.mitauthor | Schuh, Christopher A | |
dc.relation.journal | Nature Communications | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-03-04T14:39:02Z | |
dspace.orderedauthors | Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-9745-2155 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4473-1983 | |
dc.identifier.orcid | https://orcid.org/0000-0001-7804-5418 | |
dc.identifier.orcid | https://orcid.org/0000-0001-9856-2682 | |
mit.license | PUBLISHER_CC | en_US |