MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion

Author(s)
Ma, Chu; Kim, Seok; Fang, Xuanlai
Thumbnail
Downloads41467-018-08221-7.pdf (1.648Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The resolution of acoustic imaging suffers from diffraction limit due to the loss of evanescent field that carries subwavelength information. Most of the current methods for overcoming the diffraction limit in acoustics still operate in the near-field of the object. Here we demonstrate the design and experimental realization of an acoustic far-field subwavelength imaging system. Our system is based on wave vector filtering and conversion with a transmitter at the near-field and a spatially symmetrical receiver at the far-field. By tuning geometric parameters of the transmitting/receiving pair, different spatial frequency bands can be separated and projected to the far-field. Furthermore, far-field imaging and edge detection of subwavelength objects are experimentally demonstrated. The proposed system brings new possibilities for far-field subwavelength wave manipulation, which can be further applied to medical imaging, nondestructive testing, and acoustic communication.
Date issued
2019-01
URI
http://hdl.handle.net/1721.1/121078
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Ma, Chu, Seok Kim, and Nicholas X. Fang. “Far-Field Acoustic Subwavelength Imaging and Edge Detection Based on Spatial Filtering and Wave Vector Conversion.” Nature Communications 10, no. 1 (January 14, 2019).
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.