Multi-robot grasp planning for sequential assembly operations
Author(s)
Dogar, MehmetRemzi; Spielberg, Andrew; Baker, Stuart Polak; Rus, Daniela L
Download10514_2018_Article_9748.pdf (2.421Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
\This paper addresses the problem of finding robot configurations to grasp assembly parts during a sequence of collaborative assembly operations. We formulate the search for such configurations as a constraint satisfaction problem (CSP). Collision constraints in an operation and transfer constraints between operations determine the sets of feasible robot configurations. We show that solving the connected constraint graph with off-the-shelf CSP algorithms can quickly become infeasible even for a few sequential assembly operations. We present an algorithm which, through the assumption of feasible regrasps, divides the CSP into independent smaller problems that can be solved exponentially faster. The algorithm then uses local search techniques to improve this solution by removing a gradually increasing number of regrasps from the plan. The algorithm enables the user to stop the planner anytime and use the current best plan if the cost of removing regrasps from the plan exceeds the cost of executing those regrasps. We present simulation experiments to compare our algorithm’s performance to a naive algorithm which directly solves the connected constraint graph. We also present a physical robot system which uses the output of our planner to grasp and bring parts together in assembly configurations.
Date issued
2018-04Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Autonomous Robots
Publisher
Springer US
Citation
Dogar, Mehmet, Andrew Spielberg, Stuart Baker, and Daniela Rus. “Multi-Robot Grasp Planning for Sequential Assembly Operations.” Autonomous Robots 43, no. 3 (April 16, 2018): 649–664. © 2018 The Authors
Version: Final published version
ISSN
0929-5593
1573-7527