Show simple item record

dc.contributor.authorHuang, Bevin
dc.contributor.authorClark, Genevieve
dc.contributor.authorNavarro-Moratalla, Efrén
dc.contributor.authorSeyler, Kyle L.
dc.contributor.authorWilson, Nathan
dc.contributor.authorMcGuire, Michael A.
dc.contributor.authorCobden, David H.
dc.contributor.authorXiao, Di
dc.contributor.authorYao, Wang
dc.contributor.authorXu, Xiaodong
dc.contributor.authorKlein, Dahlia Rivka
dc.contributor.authorMacNeill, David
dc.contributor.authorJarillo-Herrero, Pablo
dc.date.accessioned2019-03-29T19:35:15Z
dc.date.available2019-03-29T19:35:15Z
dc.date.issued2018-04
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttp://hdl.handle.net/1721.1/121118
dc.description.abstractControlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI[subscript 3]) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI[subscript 3] bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41565-018-0121-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleElectrical control of 2D magnetism in bilayer CrI[subscript 3]en_US
dc.typeArticleen_US
dc.identifier.citationHuang, Bevin, Genevieve Clark, Dahlia R. Klein, David MacNeill, Efrén Navarro-Moratalla, Kyle L. Seyler, Nathan Wilson, et al. “Electrical Control of 2D Magnetism in Bilayer CrI[subscript 3].” Nature Nanotechnology 13, no. 7 (April 23, 2018): 544–548. © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorKlein, Dahlia Rivka
dc.contributor.mitauthorMacNeill, David
dc.contributor.mitauthorJarillo-Herrero, Pablo
dc.relation.journalNature Nanotechnologyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-03-27T13:36:17Z
dspace.orderedauthorsHuang, Bevin; Clark, Genevieve; Klein, Dahlia R.; MacNeill, David; Navarro-Moratalla, Efrén; Seyler, Kyle L.; Wilson, Nathan; McGuire, Michael A.; Cobden, David H.; Xiao, Di; Yao, Wang; Jarillo-Herrero, Pablo; Xu, Xiaodongen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9581-2105
dc.identifier.orcidhttps://orcid.org/0000-0001-8217-8213
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record