Show simple item record

dc.contributor.authorBarsotti, Lisa
dc.contributor.authorBodiya, Timothy P.
dc.contributor.authorCorbitt, Thomas R
dc.contributor.authorDonovan, Frederick J
dc.contributor.authorDwyer, S.
dc.contributor.authorEvans, Marshall
dc.contributor.authorFoley, Stephany
dc.contributor.authorFritschel, Peter K
dc.contributor.authorHarry, Gregory
dc.contributor.authorKatsavounidis, Erotokritos
dc.contributor.authorKissel, Jeffrey S.
dc.contributor.authorMacInnis, Myron E
dc.contributor.authorMandel, Ilya
dc.contributor.authorMason, Kenneth R
dc.contributor.authorMatichard, Fabrice
dc.contributor.authorMavalvala, Nergis
dc.contributor.authorMittleman, Richard K
dc.contributor.authorOelker, Eric Glenn
dc.contributor.authorSankar, S.
dc.contributor.authorShapiro, B.
dc.contributor.authorShoemaker, David H
dc.contributor.authorSmith, N. D.
dc.contributor.authorSoto, J.
dc.contributor.authorStein, Abraham
dc.contributor.authorVaulin, Ruslan
dc.contributor.authorWaldman, Samuel J.
dc.contributor.authorWeiss, Rainer
dc.contributor.authorWipf, Christopher C.
dc.contributor.authorZucker, Michael E
dc.date.accessioned2019-06-03T16:35:40Z
dc.date.available2019-06-03T16:35:40Z
dc.date.issued2011-09
dc.date.submitted2011-05
dc.identifier.issn1745-2473
dc.identifier.issn1745-2481
dc.identifier.urihttps://hdl.handle.net/1721.1/121196
dc.description.abstractAround the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology - the injection of squeezed light - offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.en_US
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nphys2083en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA gravitational wave observatory operating beyond the quantum shot-noise limiten_US
dc.typeArticleen_US
dc.identifier.citationAbadie, J. et al. “A Gravitational Wave Observatory Operating Beyond the Quantum Shot-Noise Limit.” Nature Physics 7, 12 (September 2011): 962–965 © 2011 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.relation.journalNature Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-19T16:35:28Z
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T10:22:51Z
mit.journal.volume7en_US
mit.journal.issue12en_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

No Thumbnail [100%x160]
Thumbnail

This item appears in the following Collection(s)

Show simple item record