MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous Multiwavelength Variability Characterization of the Free-floating Planetary-mass Object PSO J318.5−22

Author(s)
Biller, Beth A.; Vos, Johanna; Buenzli, Esther; Allers, Katelyn; Bonnefoy, Mickaël; Charnay, Benjamin; Bézard, Bruno; Allard, France; Homeier, Derek; Bonavita, Mariangela; Brandner, Wolfgang; Crossfield, Ian Jm; Dupuy, Trent; Henning, Thomas; Kopytova, Taisiya; Liu, Michael C.; Manjavacas, Elena; Schlieder, Joshua; ... Show more Show less
Thumbnail
DownloadBiller_2018_AJ_155_95.pdf (7.994Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present simultaneous Hubble Space Telescope (HST) WFC3+Spitzer IRAC variability monitoring for the highly variable young (∼20 Myr) planetary-mass object PSO J318.5-22. Our simultaneous HST + Spitzer observations covered approximately two rotation periods with Spitzer and most of a rotation period with the HST. We derive a period of 8.6 ± 0.1 hr from the Spitzer light curve. Combining this period with the measured for this object, we find an inclination of 56.°2 ± 8.°1. We measure peak-to-trough variability amplitudes of 3.4% ± 0.1% for Spitzer Channel 2 and 4.4%-5.8% (typical 68% confidence errors of ∼0.3%) in the near-IR bands (1.07-1.67 μm) covered by the WFC3 G141 prism - the mid-IR variability amplitude for PSO J318.5-22 is one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary-mass object. Additionally, we detect phase offsets ranging from 200° to 210° (typical error of ∼4°) between synthesized near-IR light curves and the Spitzer mid-IR light curve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.
Date issued
2018-01
URI
https://hdl.handle.net/1721.1/121216
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Astronomical Journal
Publisher
American Astronomical Society
Citation
Biller, Beth A. et al. “Simultaneous Multiwavelength Variability Characterization of the Free-Floating Planetary-Mass Object PSO J318.5−22.” The Astronomical Journal 155, 2 (January 2018): 95 © 2018 American Astronomical Society
Version: Final published version
ISSN
1538-3881
0004-6256

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.