Show simple item record

dc.contributor.authorTielrooij, K. J.
dc.contributor.authorSong, J. C. W.
dc.contributor.authorJensen, S. A.
dc.contributor.authorCenteno, A.
dc.contributor.authorPesquera, A.
dc.contributor.authorZurutuza Elorza, A.
dc.contributor.authorBonn, M.
dc.contributor.authorLevitov, Leonid
dc.contributor.authorKoppens, F. H. L.
dc.date.accessioned2019-06-12T17:54:32Z
dc.date.available2019-06-12T17:54:32Z
dc.date.issued2013-02
dc.date.submitted2012-10
dc.identifier.issn1745-2473
dc.identifier.issn1745-2481
dc.identifier.urihttps://hdl.handle.net/1721.1/121258
dc.description.abstractThe conversion of light into free electron-hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron-hole pairs through carrier-carrier scattering processes. Here we use optical pump-terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier-carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-09-1-0724)en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NPHYS2564en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePhotoexcitation cascade and multiple hot-carrier generation in grapheneen_US
dc.typeArticleen_US
dc.identifier.citationTielrooij, K. J. et al. “Photoexcitation Cascade and Multiple Hot-Carrier Generation in Graphene.” Nature Physics 9, n4 (February 2013): 248–252 © 2013 Macmillan Publishers Limiteden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalNature Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-29T15:05:16Z
dspace.orderedauthorsTielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Zurutuza Elorza, A.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L.en_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:28:37Z
mit.journal.volume9en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record