Show simple item record

dc.contributor.authorPeng, Cheng
dc.contributor.authorNanot, Sebastien
dc.contributor.authorShiue, Ren-Jye
dc.contributor.authorGrosso, Gabriele
dc.contributor.authorYang, Yafang
dc.contributor.authorHempel, Marek
dc.contributor.authorJarillo-Herrero, Pablo
dc.contributor.authorKong, Jing
dc.contributor.authorKoppens, Frank H L
dc.contributor.authorEfetov, Dmitri K
dc.contributor.authorEnglund, Dirk R.
dc.date.accessioned2019-06-12T18:17:48Z
dc.date.available2019-06-12T18:17:48Z
dc.date.issued2018-08
dc.date.submitted2018-08
dc.identifier.issn1367-2630
dc.identifier.urihttps://hdl.handle.net/1721.1/121259
dc.description.abstractA central challenge in making two-dimensional (2D) material-based devices faster, smaller, and more efficient is to control their charge carrier density at the nanometer scale. Traditional gating techniques based on capacitive coupling through a gate dielectric cannot generate strong and uniform electric fields at this scale due to divergence of the fields in dielectrics. This field divergence limits the gating strength, boundary sharpness, and minimum feature size of local gates, precluding certain device concepts (such as plasmonics and metamaterials based on spatial charge density variation) and resulting in large device footprints. Here we present a nanopatterned electrolyte gating concept that allows locally creating excess charges by combining electrolyte gating with an ion-impenetrable e-beam-defined resist mask. Electrostatic simulations indicate high carrier density variations of Δn ∼ 1014 cm-2 across a length of only 15 nm at the mask boundaries on the surface of a 2D conductor. We implement this technique using cross-linked poly(methyl methacrylate), experimentally prove its ion-impenetrability and demonstrate e-beam patterning of the resist mask down to 30 nm half-pitch resolution. The spatial versatility enables us to demonstrate a compact mid-infrared graphene thermopile with a geometry optimized for Gaussian incident radiation. The thermopile has a small footprint despite the number of thermocouples in the device, paving the way for more compact high-speed thermal detectors and cameras.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Award N00014-14-1-0349)en_US
dc.description.sponsorshipUnited States. Army Research Office (Award W911NF-17-1-0435)en_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1367-2630/AADA75en_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceIOP Publishingen_US
dc.titleCompact mid-infrared graphene thermopile enabled by a nanopatterning technique of electrolyte gatesen_US
dc.typeArticleen_US
dc.identifier.citationPeng, Cheng et al. “Compact Mid-Infrared Graphene Thermopile Enabled by a Nanopatterning Technique of Electrolyte Gates.” New Journal of Physics 20, 8 (August 2018): 083050 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalNew Journal of Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-27T13:32:54Z
dspace.orderedauthorsPeng, Cheng; Nanot, Sebastien; Shiue, Ren-Jye; Grosso, Gabriele; Yang, Yafang; Hempel, Marek; Jarillo-Herrero, Pablo; Kong, Jing; Koppens, Frank H L; Efetov, Dmitri K; Englund, Dirken_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:00:37Z
mit.journal.volume20en_US
mit.journal.issue8en_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record