MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunnelling spectroscopy of Andreev states in graphene

Author(s)
Bretheau, Landry; Wang, Joel I-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; ... Show more Show less
Thumbnail
Download1703.10655.pdf (3.899Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties1,2. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states3-8. Spectroscopic studies of Andreev states have been performed in just a handful of systems9-13. The unique geometry, electronic structure and high mobility of graphene14,15 make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene- superconductorjunctions.Themeasuredenergyspectra,which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment,thusestablishingtheconnectionbetweenAndreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials 16-18 .
Date issued
2017-05
URI
https://hdl.handle.net/1721.1/121327
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nature Physics
Publisher
Springer Nature
Citation
Bretheau, Landry et al. “Tunnelling Spectroscopy of Andreev States in Graphene.” Nature Physics 13, 8 (May 2017): 756–760 © 2017 Macmillan Publishers Limited, part of Springer Nature
Version: Author's final manuscript
ISSN
1745-2473
1745-2481

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.