Superballistic flow of viscous electron fluid through graphene constrictions
Author(s)
Krishna Kumar, R.; Bandurin, D. A.; Pellegrino, F. M. D.; Cao, Y.; Principi, A.; Guo, Haoyu; Auton, G. H.; Ben Shalom, M.; Ponomarenko, L. A.; Falkovich, G.; Watanabe, K.; Taniguchi, T.; Grigorieva, I. V.; Levitov, Leonid; Polini, M.; Geim, A. K.; ... Show more Show less
Download1703.06672.pdf (1.270Mb)
Terms of use
Metadata
Show full item recordAbstract
Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behaviour characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behaviour is attributed to collective movement of interacting electrons, which € shields' individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.
Date issued
2017-08Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Physics
Publisher
Springer Nature
Citation
Krishna Kumar, R. et al. “Superballistic Flow of Viscous Electron Fluid through Graphene Constrictions.” Nature Physics 13, 12 (August 2017): 1182–1185
Version: Author's final manuscript
ISSN
1745-2473
1745-2481