Show simple item record

dc.contributor.authorDemaine, Erik D
dc.contributor.authorHajiaghayi, MohammadTaghi
dc.contributor.authorMahini, Hamid
dc.contributor.authorZadimoghaddam, Morteza
dc.date.accessioned2019-06-19T18:09:27Z
dc.date.available2019-06-19T18:09:27Z
dc.date.issued2012-04
dc.identifier.issn1549-6325
dc.identifier.urihttps://hdl.handle.net/1721.1/121367
dc.description.abstractWe study Nash equilibria in the setting of network creation games introduced recently by Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker. In this game we have a set of selfish node players, each creating some incident links, and the goal is to minimize α times the cost of the created links plus sum of the distances to all other players. Fabrikant et al. proved an upper bound O(√α) on the price of anarchy: the relative cost of the lack of coordination. Albers, Eilts, Even-Dar, Mansour, and Roditty show that the price of anarchy is constant for α = O(√n) and for α ≥ 12n[lgn], and that the price of anarchy is 15(1 + (min{α/n, n 2/alpha;}) 1/3) for any α. The latter bound shows the first sublinear worst-case bound, O(n 1/3), for all α. But no better bound is known for α between ω(√n) and o(nlgn). Yet α ≈ n is perhaps the most interesting range, for it corresponds to considering the average distance (instead of the sum of distances) to other nodes to be roughly on par with link creation (effectively dividing α by n). In this article, we prove the first o(n ε) upper bound for general α, namely 2 (√lgn). We also prove a constant upper bound for α = O(n 1-ε) for any fixed ε ≤ 0, substantially reducing the range of α for which constant bounds have not been obtained. Along the way, we also improve the constant upper bound by Albers et al. (with the lead constant of 15) to 6 for α < (n/2) 1/2 and to 4 for α < (n/2) 1/3. Next we consider the bilateral network variant of Corbo and Parkes, in which links can be created only with the consent of both endpoints and the link price is shared equally by the two. Corbo and Parkes show an upper bound of O(√α) and a lower bound of Ω(lgα) for α ≤ n. In this article, we show that in fact the upper bound O(√α) is tight for α ≤ n, by proving a matching lower bound of Ω(√α). For α > n, we prove that the price of anarchy is Θ(n/√α). Finally we introduce a variant of both network creation games, in which each player desires to minimize α times the cost of its created links plus the maximum distance (instead of the sum of distances) to the other players. This variant of the problem is naturally motivated by considering the worst case instead of the average case. Interestingly, for the original (unilateral) game, we show that the price of anarchy is at most 2 for α ≥ n, O(min{4√lgn, (n/α) 1/3}) for 2√lgn ≥ α ≥ n, and O(n 2/α) for α > 2√lgn. For the bilateral game, we prove matching upper and lower bounds of Θ(n/α+1) for α ≤ n, and an upper bound of 2 for α > n.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant number ITR ANI-0205445)en_US
dc.description.sponsorshipDanish National Research Foundation. Center for Massive Data Algorithmicsen_US
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionof10.1145/2151171.2151176en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe price of anarchy in network creation gamesen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D., MohammadTaghi Hajiaghayi, Hamid Mahini and Morteza Zadimoghaddam. "The Price of Anarchy in Network Creation Games." ACM Transactions on Algorithms, 8 (2) April 2012, Article No. 13.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalACM Transactions on Algorithmsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-06-19T14:46:47Z
dspace.date.submission2019-06-19T14:46:47Z
mit.journal.volume8en_US
mit.journal.issue2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record