Show simple item record

dc.contributor.authorPate, S.F.
dc.contributor.authorWester, Thomas
dc.contributor.authorBugel, Leonard G.
dc.contributor.authorConrad, Janet Marie
dc.contributor.authorHenderson, E.
dc.contributor.authorJones, Benjamin J. P
dc.contributor.authorMcLean, A.I.L.
dc.contributor.authorMoon, J.
dc.contributor.authorToups, Matthew
dc.contributor.authorWongjirad, Taritree
dc.date.accessioned2019-06-21T16:39:43Z
dc.date.available2019-06-21T16:39:43Z
dc.date.issued2018-02
dc.date.submitted2017-11
dc.identifier.issn1748-0221
dc.identifier.urihttps://hdl.handle.net/1721.1/121376
dc.description.abstractWe present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.en_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1748-0221/13/02/P02034en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNEen_US
dc.typeArticleen_US
dc.identifier.citationPate, S.F. et al. “A Model for the Global Quantum Efficiency for a TPB-Based Wavelength-Shifting System Used with Photomultiplier Tubes in Liquid Argon in MicroBooNE.” Journal of Instrumentation 13, 2 (February 2018): P02034 © 2018 IOP Publishing Ltd and Sissa Medialaben_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-15T15:09:56Z
dspace.orderedauthorsPate, S.F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B.J.P.; McLean, A.I.L.; Moon, J.S.; Toups, M.; Wongjirad, T.en_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T15:57:26Z
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record