Necklaces, Convolutions, and X+Y
Author(s)
Bremner, David; Chan, Timothy M.; Demaine, Erik D; Erickson, Jeff; Hurtado, Ferran; Iacono, John; Langerman, Stefan; Taslakian, Perouz; ... Show more Show less
DownloadAccepted version (377.9Kb)
Terms of use
Metadata
Show full item recordAbstract
We give subquadratic algorithms that, given two necklaces each with n beads at arbitrary positions, compute the optimal rotation of the necklaces to best align the beads. Here alignment is measured according to the lp norm of the vector of distances between pairs of beads from opposite necklaces in the best perfect matching. We show surprisingly different results for p = 1, p even, and p =∞ .For p even, we reduce the problem to standard convolution, while for p =∞ and p = 1, we reduce the problem to ( min , + ) convolution and ( median , + ) convolution. Then we solve the latter two convolution problems in subquadratic time, which are interesting results in their own right. These results shed some light on the classic sorting X + Y problem, because the convolutions can be viewed as computing order statistics on the antidiagonals of the X + Y matrix. All of our algorithms run in o(n²) time, whereas the obvious algorithms for these problems run in Θ(n 2 ) time.
Date issued
2012-12Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Algorithmica
Publisher
Springer Nature America, Inc
Citation
Bremner, David, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman and Perouz Taslakian. "Necklaces, Convolutions, and X + Y." Algorithmica, Vol. 69 (2) June 2014: 294-314.
Version: Author's final manuscript
ISSN
0178-4617
1432-0541