MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Asynchronous Approximation of a Single Component of the Solution to a Linear System

Author(s)
Ozdaglar, Asuman E.; Shah, Devavrat; Yu, Christina Lee
Thumbnail
DownloadAccepted version (1.040Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
IEEE We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations Ax = b, where A is a positive definite real matrix and b ∈ R[superscript n]. This can equivalently be formulated as solving for x = Gx + z for some G and z such that the spectral radius of G is less than 1. Our algorithm relies on the Neumann series characterization of the component xi, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius ρ(|G|) < 1, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds which depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices which are drawn from distributions that are time and path dependent. We specifically consider the setting where n is large, yet G is sparse, e.g., each row has at most d nonzero entries. This is motivated by applications in which G is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of n, our algorithm can provide significant reduction in computation cost as opposed to any algorithm which computes the global solution vector x. Our algorithm obtains an ε||x||[subscript 2] additive approximation for x[subscript i] in constant time with respect to the size of the matrix when the maximum row sparsity d = O(1) and 1/(1-||G||[subscript 2]) = O(1), where ||G||[subscript 2] is the induced matrix operator 2-norm. Index Terms—linear system of equations, local computation, asynchronous randomized algorithms, distributed algorithms
Date issued
2019
URI
https://hdl.handle.net/1721.1/121466
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
IEEE Transactions on Network Science and Engineering
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ozdaglar, Asu, et al. “Asynchronous Approximation of a Single Component of the Solution to a Linear System.” IEEE Transactions on Network Science and Engineering, 2019, pp. 1–1.
Version: Author's final manuscript
ISSN
2327-4697
2334-329X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.