Show simple item record

dc.contributor.authorKrishnamurthy, Ajay
dc.contributor.authorHunston, Donald L.
dc.contributor.authorForster, Amanda L.
dc.contributor.authorNatarajan, Bharath
dc.contributor.authorLiotta, Andrew H.
dc.contributor.authorWicks, Sunny S.
dc.contributor.authorStutzman, Paul E.
dc.contributor.authorWardle, Brian L.
dc.contributor.authorLiddle, J. Alexander
dc.contributor.authorForster, Aaron M.
dc.date.accessioned2019-07-03T18:10:20Z
dc.date.available2019-07-03T18:10:20Z
dc.date.issued2017-09-17
dc.date.submitted2017-08-11
dc.identifier.issn0008-6223
dc.identifier.urihttps://hdl.handle.net/1721.1/121489
dc.description.abstractCarbon nanotube (CNT) hierarchical composites are increasingly identified as next-generation aerospace materials, so it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of the CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44%) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at elevated temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. SEM images of the failed composite cross-sections highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures that enhance the service life of composites.en_US
dc.description.sponsorshipAirbus Groupen_US
dc.description.sponsorshipBoeing Companyen_US
dc.description.sponsorshipEMBRAERen_US
dc.description.sponsorshipLockheed Martinen_US
dc.description.sponsorshipSaab (Firm)en_US
dc.description.sponsorshipANSYS, Inc.en_US
dc.description.sponsorshipToho Tenaxen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.carbon.2017.09.006en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Wardle via Barbara Williamsen_US
dc.titleEnhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy compositesen_US
dc.typeArticleen_US
dc.identifier.citationKrishnamurthy, Ajay, et al. “Enhanced Durability of Carbon Nanotube Grafted Hierarchical Ceramic Microfiber-Reinforced Epoxy Composites.” Carbon 125 (December 2017): 63–75.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverWardle, Brian Len_US
dc.relation.journalCarbonen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T10:31:39Z
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record