Show simple item record

dc.contributor.authorMakhdoumi Kakhaki, Ali
dc.contributor.authorOzdaglar, Asuman E
dc.date.accessioned2019-07-09T13:02:38Z
dc.date.available2019-07-09T13:02:38Z
dc.date.issued2017-10
dc.identifier.issn0018-9286
dc.identifier.urihttps://hdl.handle.net/1721.1/121529
dc.description.abstractWe propose a new distributed algorithm based on alternating direction method of multipliers (ADMM) to minimize sum of locally known convex functions using communication over a network. This optimization problem emerges in many applications in distributed machine learning and statistical estimation. Our algorithm allows for a general choice of the communication weight matrix, which is used to combine the iterates at different nodes. We show that when functions are convex, both the objective function values and the feasibility violation converge with rate O(1/T), where $T$ is the number of iterations. We then show that when functions are strongly convex and have Lipschitz continuous gradients, the sequence generated by our algorithm converges linearly to the optimal solution. In particular, an psilon-optimal solution can be computed with O(κ (1)) iterations, where κ is the condition number of the problem. Our analysis highlights the effect of network and communication weights on the convergence rate through degrees of the nodes, the smallest nonzero eigenvalue, and operator norm of the communication matrix.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/TAC.2017.2677879en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleConvergence Rate of Distributed ADMM over Networksen_US
dc.typeArticleen_US
dc.identifier.citationMakhdoumi, Ali and Asuman Ozdaglar. "Convergence Rate of Distributed ADMM over Networks." IEEE Transactions on Automatic Control 62, no. 10 (October 2017): pages 5082 - 5095.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalIEEE Transactions on Automatic Controlen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-28T16:04:29Z
dspace.date.submission2019-06-28T16:04:30Z
mit.journal.volume62en_US
mit.journal.issue10en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record