MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semidefinite Approximations of the Matrix Logarithm

Author(s)
Fawzi, Hamza; Saunderson, James; Parrilo, Pablo A.
Thumbnail
DownloadAccepted version (575.2Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The matrix logarithm, when applied to Hermitian positive definite matrices, is concave with respect to the positive semidefinite order. This operator concavity property leads to numerous concavity and convexity results for other matrix functions, many of which are of importance in quantum information theory. In this paper we show how to approximate the matrix logarithm with functions that preserve operator concavity and can be described using the feasible regions of semidefinite optimization problems of fairly small size. Such approximations allow us to use off-the-shelf semidefinite optimization solvers for convex optimization problems involving the matrix logarithm and related functions, such as the quantum relative entropy. The basic ingredients of our approach apply, beyond the matrix logarithm, to functions that are operator concave and operator monotone. As such, we introduce strategies for constructing semidefinite approximations that we expect will be useful, more generally, for studying the approximation power of functions with small semidefinite representations. Keywords: Convex optimization, Matrix concavity, Quantum relative entropy
Date issued
2018-03-21
URI
https://hdl.handle.net/1721.1/121533
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Foundations of Computational Mathematics Foundations of Computational Mathematics
Publisher
Springer Nature
Citation
Fawzi, Hamza, et al. “Semidefinite Approximations of the Matrix Logarithm.” Foundations of Computational Mathematics 19, no. 2 (April 2019): 259–96.
Version: Author's final manuscript
ISSN
1615-3375
1615-3383

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.