MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A study of soot formation in a rapid compression machine at conditions representative of cold-fast-idle in spark ignition engines

Author(s)
Ketterer, Justin E.; Cheng, Wai K.
Thumbnail
Download1-RCM_paper_final_180409.pdf (593.7Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The soot yield, defined as the ratio of the soot mass to the carbon mass in the fuel, for the homogeneous combustion of a rich fuel-air mixture has been measured in a rapid compression machine using the laser light extinction method. The temperature and pressure conditions are representative of those in spark-ignition direct-injection engines at cold-fast-idle. The fuels used are a certification gasoline (with 28% aromatic content) and a blend of the gasoline with toluene (the blend had 40% aromatic content by volume) so that the sensitivity of soot formation to the fuel aromatic content could be assessed. Beyond a threshold fuel equivalence ratio (ϕ) value, the soot yield increases exponentially with ϕ. The soot yield of the gasoline–toluene blend is four to six times higher than that of the gasoline. The soot yield decreases exponentially with temperature, by a factor of 0.58 for every 10 K increase in temperature. In the 657–695 K temperature range, the threshold ϕ value increases linearly from approximately 2.4 to 2.7, at a rate of 0.1 point per 10 K rise in temperature. This temperature dependence is insensitive to the charge density.
Date issued
2018-05-28
URI
https://hdl.handle.net/1721.1/121538
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
International Journal of Engine Research
Publisher
SAGE Publications
Citation
Ketterer, Justin and Wai K. Cheng. "A study of soot formation in a rapid compression machine at conditions representative of cold-fast-idle in spark ignition engines." International Journal of Engine Research, May 2018.
Version: Author's final manuscript
ISSN
1468-0874
2041-3149

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.