MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Validation and Initial Characterization of the Long-period Planet Kepler-1654 b

Author(s)
Beichman, C. A.; Giles, H. A. C.; Akeson, R.; Ciardi, D.; Christiansen, J.; Isaacson, H.; Marcy, G. M.; Sinukoff, E.; Greene, T.; Fortney, J. J.; Hu, R.; Howard, A. W.; Petigura, E. A.; Knutson, H. A.; Crossfield, Ian Jm; ... Show more Show less
Thumbnail
DownloadBeichman_2018_AJ_155_158.pdf (1.197Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654b (originally KIC 8410697b), which shows exactly two transit events and whose second transit occurred only five days before the failure of the second of two reaction wheels brought the primary Kepler mission to an end. A number of authors have also examined light curves from the Kepler mission searching for long-period planets and identified this candidate. Starting in 2014 September, we began an observational program of imaging, reconnaissance spectroscopy, and precision radial velocity (RV) measurements that confirm with a high degree of confidence that Kepler-1654b is a bona fide transiting planet orbiting a mature G5V star (T[subscript eff] = 5580 K, [Fe/H] = -0.08) with a semimajor axis of 2.03 au, a period of 1047.84 days, and a radius of 0.82 ±0.02 R Jup. RV measurements using Keck's HIRES spectrometer obtained over 2.5 years set a limit to the planet's mass of <0.5 (3σ) M[subscript Jup]. The bulk density of the planet is similar to that of Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit spectroscopy with the James Webb Space Telescope, as their relatively cold equilibrium temperatures (T[subscript pl] ∼ 200 K) make them interesting from the standpoint of exoplanet atmospheric physics. Unfortunately, these low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging. Finally, the long time between transits can make scheduling JWST observations difficult - as is the case with Kepler-1654b. Key words: planetary systems – planets and satellites: detection
Date issued
2018-03-20
URI
https://hdl.handle.net/1721.1/121573
Department
Massachusetts Institute of Technology. Department of Physics
Journal
The Astronomical Journal
Publisher
American Astronomical Society
Citation
Beichman, C. A. et al. “Validation and Initial Characterization of the Long-Period Planet Kepler-1654 b.” The Astronomical Journal 155, no. 4 (March 19, 2018): 158. © 2018 The American Astronomical Society
Version: Final published version
ISSN
1538-3881

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.