Show simple item record

dc.contributor.authorOron, Shaul
dc.contributor.authorDekel, Tali
dc.contributor.authorXue, Tianfan
dc.contributor.authorFreeman, William T.
dc.contributor.authorAvidan, Shai
dc.date.accessioned2019-07-10T18:13:28Z
dc.date.available2019-07-10T18:13:28Z
dc.date.issued2018-08-01
dc.identifier.issn0162-8828
dc.identifier.issn2160-9292
dc.identifier.issn1939-3539
dc.identifier.urihttps://hdl.handle.net/1721.1/121575
dc.description.abstractWe propose a novel method for template matching in unconstrained environments. Its essence is the Best-Buddies Similarity (BBS), a useful, robust, and parameter-free similarity measure between two sets of points. BBS is based on counting the number of Best-Buddies Pairs (BBPs) - pairs of points in source and target sets that are mutual nearest neighbours, i.e., each point is the nearest neighbour of the other. BBS has several key features that make it robust against complex geometric deformations and high levels of outliers, such as those arising from background clutter and occlusions. We study these properties, provide a statistical analysis that justifies them, and demonstrate the consistent success of BBS on a challenging real-world dataset while using different types of features.en_US
dc.description.sponsorshipIsrael Science Foundation (Grant 1917/2015)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (1212849)en_US
dc.description.sponsorshipShell Researchen_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/tpami.2017.2737424en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleBest-Buddies Similarity—Robust Template Matching Using Mutual Nearest Neighborsen_US
dc.typeArticleen_US
dc.identifier.citationOron, Shaul, et al. “Best-Buddies Similarity—Robust Template Matching Using Mutual Nearest Neighbors.” IEEE Transactions on Pattern Analysis and Machine Intelligence 40, no. 8 (August 2018): 1799–813. © 2017 IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-05-28T14:46:04Z
dspace.date.submission2019-05-28T14:46:06Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record