MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of Novel Fibrosis Modifiers by In Vivo siRNA Silencing

Author(s)
Kauffman, Kevin John; Mir, Faryal; Anderson, Daniel Griffith
Thumbnail
DownloadPublished version (1.243Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.
Date issued
2017-06
URI
https://hdl.handle.net/1721.1/121997
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Harvard University--MIT Division of Health Sciences and Technology
Journal
Molecular Therapy: Nucleic Acid
Publisher
Elsevier BV
Citation
Vollmann, Elizabeth H., Lizhi Cao, Aldo Amatucci, Taylor Reynolds, Stefan Hamann, Isin Dalkilic-Liddle, Thomas O. Cameron, Markus Hossbach, Kevin J. Kauffman, Faryal F. Mir, Daniel G. Anderson, Tatiana Novobrantseva, Victor Koteliansky, Tatiana Kisseleva, David Brenner, Jeremy Duffield, and Linda C. Burkly. "Identification of Novel Fibrosis Modifiersby In Vivo siRNA Silencing." Molecular Therapy: Nucleic Acids 7, June 2017 © 2017 The Author(s)
Version: Final published version
ISSN
2162-2531

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.