Show simple item record

dc.contributor.authorNelson, Keith. A.
dc.contributor.authorVeysset, David Georges
dc.contributor.authorKooi, Steven E
dc.contributor.authorMaznev, Alexei
dc.contributor.authorTang, Shengchang
dc.contributor.authorMijailovic, Aleksandar S.
dc.contributor.authorYang, Yun Jung
dc.contributor.authorGeiser, Kyle Thomas
dc.contributor.authorVan Vliet, Krystyn J
dc.contributor.authorOlsen, Bradley D
dc.contributor.authorNelson, Keith Adam
dc.date.accessioned2019-09-12T20:35:33Z
dc.date.available2019-09-12T20:35:33Z
dc.date.issued2018-10
dc.date.submitted2018-05
dc.identifier.issn1751-6161
dc.identifier.urihttps://hdl.handle.net/1721.1/122055
dc.description.abstractThe high-velocity impact response of gelatin and synthetic hydrogel samples is investigated using a laser-based microballistic platform for launching and imaging supersonic micro-particles. The micro-particles are monitored during impact and penetration into the gels using a high-speed multi-frame camera that can record up to 16 images with nanosecond time resolution. The trajectories are compared with a Poncelet model for particle penetration, demonstrating good agreement between experiments and the model for impact in gelatin. The model is further validated on a synthetic hydrogel and the applicability of the results is discussed. We find the strength resistance parameter in the Poncelet model to be two orders of magnitude higher than in macroscopic experiments at comparable impact velocities. The results open prospects for testing high-rate behavior of soft materials on the microscale and for guiding the design of drug delivery methods using accelerated microparticles. Keywords: High-velocity impact; High-speed imaging; Gelatin; Hydrogel; Penetrationen_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-13-D-0001)en_US
dc.language.isoen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmbbm.2018.06.016en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceVeysset, Daviden_US
dc.titleHigh-velocity micro-particle impact on gelatin and synthetic hydrogelen_US
dc.typeArticleen_US
dc.identifier.citationVeysset, David et al. "High-velocity micro-particle impact on gelatin and synthetic hydrogel." Journal of the Mechanical Behavior of Biomedical Materials 86 (October 2018): 71-76 © 2018 Elsevieren_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverVeysset, David, Georgesen_US
dc.relation.journalJournal of the Mechanical Behavior of Biomedical Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T14:04:59Z
mit.journal.volume86en_US
mit.licensePUBLISHER_CCen_US


Files in this item

No Thumbnail [100%x160]
Thumbnail

This item appears in the following Collection(s)

Show simple item record