MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation

Author(s)
Nandy, Aditya; Zhu, Jiazhou; Janet, Jon Paul; Duan, Chenru; Getman, Rachel B.; Kulik, Heather Janine; ... Show more Show less
Thumbnail
DownloadPublished version (2.724Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Metal-oxo moieties are important catalytic intermediates in the selective partial oxidation of hydrocarbons and in water splitting. Stable metal-oxo species have reactive properties that vary depending on the spin state of the metal, complicating the development of structure-property relationships. To overcome these challenges, we train machine-learning (ML) models capable of predicting metal-oxo formation energies across a range of first-row metals, oxidation states, and spin states. Using connectivity-only features tailored for inorganic chemistry as inputs to kernel ridge regression or artificial neural network (ANN) ML models, we achieve good mean absolute errors (4-5 kcal/mol) on set-aside test data across a range of ligand orientations. Analysis of feature importance for oxo formation energy prediction reveals the dominance of nonlocal, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing expected trends in oxo formation energetics, such as destabilization of the metal-oxo species with increasing d-filling, as well as exceptions, such as weak correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in reactivity. We carry out uncertainty-aware evolutionary optimization using the ANN to explore a > 37 000 candidate catalyst space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT), including counterintuitive oxo formation energies for oxidatively stable complexes. This approach doubles the density of confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven discovery to uncover catalyst design rules and exceptions. Keywords: metal-oxo species; machine learning; density functional theory; spin-state-dependent reactivity; transition metal catalysis
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/122278
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
ACS Catalysis
Publisher
American Chemical Society (ACS)
Citation
Nandy, Aditya et al. "Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation." ACS Catalysis 9, 9 (July 2019): 8243-8255 © 2019 American Chemical Society
Version: Final published version
ISSN
2155-5435
2155-5435

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.