Theory of Surface Forces in Multivalent Electrolytes
Author(s)
Misra, Rahul Prasanna; De Souza, John; Blankschtein, Daniel; Bazant, Martin Z
DownloadPublished version (5.390Mb)
Terms of use
Metadata
Show full item recordAbstract
Aqueous electrolyte solutions containing multivalent ions exhibit various intriguing properties, including attraction between like-charged colloidal particles, which results from strong ion-ion correlations. In contrast, the classical Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability, based on the Poisson-Boltzmann mean-field theory, always predicts a repulsive electrostatic contribution to the disjoining pressure. Here, we formulate a general theory of surface forces, which predicts that the contribution to the disjoining pressure resulting from ion-ion correlations is always attractive and can readily dominate over entropic-induced repulsions for solutions containing multivalent ions, leading to the phenomenon of like-charge attraction. Ion-specific short-range hydration interactions, as well as surface charge regulation, are shown to play an important role at smaller separation distances but do not fundamentally change these trends. The theory is able to predict the experimentally observed strong cohesive forces reported in cement pastes, which result from strong ion-ion correlations involving the divalent calcium ion.
Date issued
2019-07Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of MathematicsJournal
Langmuir
Publisher
American Chemical Society (ACS)
Citation
Misra, Rahul Prasanna et al. "Theory of Surface Forces in Multivalent Electrolytes." Langmuir 35, 35 (July 2019): 11550-11565 © 2019 American Chemical Society
Version: Final published version
ISSN
0743-7463
1520-5827