Intrinsic Timing Jitter and Latency in Superconducting Nanowire Single-photon Detectors
Author(s)
Allmaras, J.P.; Kozorezov, A.G.; Korzh, B.A.; Berggren, Karl K.; Shaw, M.D.
DownloadPhysRevApplied.11.034062.pdf (1.916Mb)
Terms of use
Metadata
Show full item recordAbstract
We analyze the origin of the intrinsic timing jitter in superconducting nanowire single-photon detectors in terms of fluctuations in the latency of the detector response, which is determined by the microscopic physics of the photon-detection process. We demonstrate that fluctuations in the physical parameters, which determine the latency, give rise to the intrinsic timing jitter. We develop a general description of latency by introducing the explicit time dependence of the internal detection efficiency. By considering the dynamic Fano fluctuations together with static spatial inhomogeneities, we study the details of the connection between latency and timing jitter. We develop both a simple phenomenological model and a more general microscopic model of detector latency and timing jitter based on the solution of the generalized time-dependent Ginzburg-Landau equations for the 1D hotbelt geometry. While the analytical model is sufficient for qualitative interpretation of recent data, the general approach establishes the framework for a more quantitative analysis of detector latency and the fundamental limits of intrinsic timing jitter. These theoretical advances can be used to interpret the results of recent experiments measuring the dependence of detection latency and timing jitter on photon energy to the few-picosecond level.
Date issued
2019-03Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Physical Review Applied
Publisher
American Physical Society
Citation
Allmaras, J.P. et al. "Intrinsic Timing Jitter and Latency in Superconducting Nanowire Single-photon Detectors." Physics Review Applied 11 (March 2019): 034062 © 2019 American Physical Society
Version: Final published version
ISSN
2331-7019