Aether: An embedded domain specific sampling language for Monte Carlo rendering
Author(s)
Anderson, Luke; Li, Tzu-Mao; Lehtinen, Jaakko; Durand, Frederic
Downloadanderson_durand.pdf (8.353Mb)
Terms of use
Metadata
Show full item recordAbstract
Implementing Monte Carlo integration requires significant domain expertise. While simple samplers, such as unidirectional path tracing, are relatively forgiving, more complex algorithms, such as bidirectional path tracing or Metropolis methods, are notoriously difficult to implement correctly. We propose Aether, an embedded domain specific language for Monte Carlo integration, which offers primitives for writing concise and correct-by-construction sampling and probability code. The user is tasked with writing sampling code, while our compiler automatically generates the code necessary for evaluating PDFs as well as the book keeping and combination of multiple sampling strategies. Our language focuses on ease of implementation for rapid exploration, at the cost of run time performance. We demonstrate the effectiveness of the language by implementing several challenging rendering algorithms as well as a new algorithm, which would otherwise be prohibitively difficult.
Date issued
2017-07Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
ACM Transactions on Graphics
Publisher
Association for Computing Machinery (ACM)
Citation
Anderson, Luke et al. "Aether: An embedded domain specific sampling language for Monte Carlo rendering." ACM Transactions on Graphics 36, 4 (July 2017): 99 © 2017 The Authors
Version: Author's final manuscript
ISSN
0730-0301