Show simple item record

dc.contributor.authorSalvador, Amaia
dc.contributor.authorHynes, Nicholas
dc.contributor.authorAytar, Yusuf
dc.contributor.authorMarin, Javier
dc.contributor.authorOfli, Ferda
dc.contributor.authorWeber, Ingmar
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2019-10-29T21:39:22Z
dc.date.available2019-10-29T21:39:22Z
dc.date.issued2017-11
dc.date.submitted2017-07
dc.identifier.isbn9781538604571
dc.identifier.urihttps://hdl.handle.net/1721.1/122660
dc.description.abstractIn this paper, we introduce Recipe1M, a new large-scale, structured corpus of over 1m cooking recipes and 800k food images. As the largest publicly available collection of recipe data, Recipe1M affords the ability to train high-capacity models on aligned, multi-modal data. Using these data, we train a neural network to find a joint embedding of recipes and images that yields impressive results on an image-recipe retrieval task. Additionally, we demonstrate that regularization via the addition of a high-level classification objective both improves retrieval performance to rival that of humans and enables semantic vector arithmetic. We postulate that these embeddings will provide a basis for further exploration of the Recipe1M dataset and food and cooking in general. Code, data and models are publicly available.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/cvpr.2017.327en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLearning Cross-Modal Embeddings for Cooking Recipes and Food Imagesen_US
dc.typeArticleen_US
dc.identifier.citationSalvador, Amaia et al. "Learning Cross-Modal Embeddings for Cooking Recipes and Food Images." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, Honolulu, Hawaii, USA, Institute of Electrical and Electronics Engineers (IEEE), November 2017 © 2017 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T16:37:35Z
dspace.date.submission2019-07-11T16:37:37Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record