MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC

Author(s)
Shankar, Ananth; Tsimerman, Jacob
Thumbnail
Downloadunlikely_intersections_in_finite_characteristic.pdf (271.9Kb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present a heuristic argument based on Honda–Tate theory against many conjectures in ‘unlikely intersections’ over the algebraic closure of a finite field; notably, we conjecture that every abelian variety of dimension 4 is isogenous to a Jacobian. Using methods of additive combinatorics, we answer a related question of Chai and Oort where the ambient Shimura variety is a power of the modular curve.
Date issued
2018-08
URI
https://hdl.handle.net/1721.1/122793
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Forum of Mathematics, Sigma
Publisher
Cambridge University Press (CUP)
Citation
Shankar, A. and Tsimerman, J. UNLIKELY INTERSECTIONS IN FINITE CHARACTERISTIC. Forum of Mathematics, Sigma, 6 (August 2018): E13 © 2018 The Author(s)
Version: Final published version
ISSN
2050-5094

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.