Show simple item record

dc.contributor.authorAggarwal, Amol
dc.contributor.authorBorodin, Alexei
dc.date.accessioned2019-11-08T20:26:42Z
dc.date.available2019-11-08T20:26:42Z
dc.date.issued2019-03
dc.date.submitted2017-09
dc.identifier.issn0091-1798
dc.identifier.urihttps://hdl.handle.net/1721.1/122811
dc.description.abstractIn this paper, we consider two models in the Kardar-Parisi-Zhang (KPZ) universality class, the asymmetric simple exclusion process (ASEP) and the stochastic six-vertex model. We introduce a new class of initial data (which we call shape generalized step Bernoulli initial data) for both of these models that generalizes the step Bernoulli initial data studied in a number of recent works on the ASEP. Under this class of initial data, we analyze the current fluctuations of both the ASEP and stochastic six-vertex model and establish the existence of a phase transition along a characteristic line, across which the fluctuation exponent changes from 1/2 to 1/3. On the characteristic line, the current fluctuations converge to the general (rank k) Baik-Ben-Arous- Péché distribution for the law of the largest eigenvalue of a critically spiked covariance matrix. For k = 1, this was established for the ASEP by Tracy and Widom; for k > 1 (and also k = 1, for the stochastic six-vertex model), the appearance of these distributions in both models is new. Keywords: asymmetric simple exclusion process, stochastic six-vertex model, Baik–Ben–Arous–Péché phase transition, stochastic higher spin vertex models, Kardar–Parisi–Zhang universality classen_US
dc.language.isoen
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/10.1214/17-aop1253en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePhase transitions in the ASEP and stochastic six-vertex modelen_US
dc.typeArticleen_US
dc.identifier.citationAggarwal, Amol, and Borodin, Alexei. "Phase transitions in the ASEP and stochastic six-vertex model." Annals of Probability 47, 2 (2019): 613-689 © 2019 Institute of Mathematical Statisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAnnals of probabilityen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-08T13:47:37Z
dspace.date.submission2019-11-08T13:47:41Z
mit.journal.volume47en_US
mit.journal.issue2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record