Show simple item record

dc.contributor.authorZhou, Qingping
dc.contributor.authorLiu, Wenqing
dc.contributor.authorLi, Jinglai
dc.contributor.authorMarzouk, Youssef M
dc.date.accessioned2019-11-13T19:18:19Z
dc.date.available2019-11-13T19:18:19Z
dc.date.issued2018-06
dc.date.submitted2018-03
dc.identifier.issn0266-5611
dc.identifier.issn1361-6420
dc.identifier.urihttps://hdl.handle.net/1721.1/122927
dc.description.abstractWe study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e. the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Advanced Scientific Computing Research (Grant e-sc0009297)en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/10.1088/1361-6420/aac287en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAn approximate empirical Bayesian method for large-scale linear-Gaussian inverse problemsen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Qingping, et al. "An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems." Inverse Problems 34, 9 (June 2018) © 2018 IOP Publishing Ltd.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalInverse Problemsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-29T18:14:04Z
dspace.date.submission2019-10-29T18:14:09Z
mit.journal.volume34en_US
mit.journal.issue9en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record