Show simple item record

dc.contributor.authorBelloni, Alexandre
dc.contributor.authorChernozhukov, Victor V
dc.contributor.authorChetverikov, Denis
dc.contributor.authorWei, Ying
dc.date.accessioned2019-11-14T20:22:27Z
dc.date.available2019-11-14T20:22:27Z
dc.date.issued2018-09
dc.date.submitted2016-02
dc.identifier.issn0090-5364
dc.identifier.urihttps://hdl.handle.net/1721.1/122942
dc.description.abstractIn this paper, we develop procedures to construct simultaneous confidence bands for p potentially infinite-dimensional parameters after model selection for general moment condition models where p is potentially much larger than the sample size of available data, n. This allows us to cover settings with functional response data where each of the p parameters is a function. The procedure is based on the construction of score functions that satisfy Neyman orthogonality condition approximately. The proposed simultaneous confidence bands rely on uniform central limit theorems for high-dimensional vectors (and not on Donsker arguments as we allow for p n). To construct the bands, we employ a multiplier bootstrap procedure which is computationally efficient as it only involves resampling the estimated score functions (and does not require resolving the high-dimensional optimization problems). We formally apply the general theory to inference on regression coefficient process in the distribution regression model with a logistic link, where two implementations are analyzed in detail. Simulations and an application to real data are provided to help illustrate the applicability of the results. Keyword: Inference after model selection ; moment condition models with a continuum of target parameters ; Lasso and Post-Lasso with functional response dataen_US
dc.language.isoen
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/17-aos1671en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.subjectStatistics, Probability and Uncertaintyen_US
dc.subjectStatistics and Probabilityen_US
dc.titleUniformly valid post-regularization confidence regions for many functional parameters in z-estimation frameworken_US
dc.typeArticleen_US
dc.identifier.citationBelloni, Alexandre et al. "Uniformly valid post-regularization confidence regions for many functional parameters in z-estimation framework." Annals of statistics 46, 6B (September 2018): 3643-3675 © 2019 Project Eucliden_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.relation.journalAnnals of statisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-10-22T14:35:35Z
dspace.date.submission2019-10-22T14:35:40Z
mit.journal.volume46en_US
mit.journal.issue6Ben_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record