Show simple item record

dc.contributor.authorDyatlov, Semen
dc.contributor.authorJin, Long
dc.date.accessioned2019-11-15T22:59:36Z
dc.date.available2019-11-15T22:59:36Z
dc.date.issued2018-08
dc.date.submitted2017-05
dc.identifier.issn0001-5962
dc.identifier.issn1871-2509
dc.identifier.urihttps://hdl.handle.net/1721.1/122960
dc.description.abstractWe show that each limiting semiclassical measure obtained from a sequence of eigenfunctions of the Laplacian on a compact hyperbolic surface is supported on the entire cosphere bundle. The key new ingredient for the proof is the fractal uncertainty principle, first formulated in “Spectral gaps, additive energy, and a fractal uncertainty principle” [Dyatlov, S. & Zahl, J. Geom. Funct. Anal., 26 (2016), 1011–1094] and proved for porous sets in “Spectral gaps without the pressure condition” [Bourgain, J. & Dyatlov, S. Ann. of Math., 187 (2018), 825–867].en_US
dc.language.isoen
dc.publisherInternational Press of Bostonen_US
dc.relation.isversionofhttp://dx.doi.org/10.4310/acta.2018.v220.n2.a3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSemiclassical measures on hyperbolic surfaces have full supporten_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon, and Long Jin. "Semiclassical measures on hyperbolic surfaces have full support." Acta Mathematica, 220, 2 (2018): 297–339 © 2018 International Press of Bostonen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalActa Mathematicaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-12T16:17:11Z
dspace.date.submission2019-11-12T16:17:15Z
mit.journal.volume220en_US
mit.journal.issue2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record