Show simple item record

dc.contributor.authorEtingof, Pavel I
dc.contributor.authorGelaki, Shlomo
dc.date.accessioned2019-11-20T14:05:24Z
dc.date.available2019-11-20T14:05:24Z
dc.date.issued2018-03
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttps://hdl.handle.net/1721.1/122973
dc.description.abstractWe generalize the theory of the second invariant cohomology group H[superscript 2][subscript inv](G) for finite groups G, developed in [3, 4, 14], to the case of affine algebraic groups G, using the methods of [9, 10, 12]. In particular, we show that for connected affine algebraic groups G over an algebraically closed field of characteristic 0, the map Θ from [14] is bijective (unlike for some finite groups, as shown in [14]). This allows us to compute H[superscript 2][subscript inv](G) in this case, and in particular show that this group is commutative (while for finite groups it can be noncommutative, as shown in [14]).en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rny025en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleInvariant Hopf 2-Cocycles for Affine Algebraic Groupsen_US
dc.typeArticleen_US
dc.identifier.citationPavel Etingof, and Shlomo Gelaki. "Invariant Hopf 2-Cocycles for Affine Algebraic Groups." International Mathematics Research Notices (March 2018) © The Authors 2018en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-12T17:19:21Z
dspace.date.submission2019-11-12T17:19:23Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record