| dc.contributor.author | Etingof, Pavel I | |
| dc.contributor.author | Gelaki, Shlomo | |
| dc.date.accessioned | 2019-11-20T14:05:24Z | |
| dc.date.available | 2019-11-20T14:05:24Z | |
| dc.date.issued | 2018-03 | |
| dc.identifier.issn | 1073-7928 | |
| dc.identifier.issn | 1687-0247 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/122973 | |
| dc.description.abstract | We generalize the theory of the second invariant cohomology group H[superscript 2][subscript inv](G) for finite groups G, developed in [3, 4, 14], to the case of affine algebraic groups G, using the methods of [9, 10, 12]. In particular, we show that for connected affine algebraic groups G over an algebraically closed field of characteristic 0, the map Θ from [14] is bijective (unlike for some finite groups, as shown in [14]). This allows us to compute H[superscript 2][subscript inv](G) in this case, and in particular show that this group is commutative (while for finite groups it can be noncommutative, as shown in [14]). | en_US |
| dc.language.iso | en | |
| dc.publisher | Oxford University Press (OUP) | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1093/imrn/rny025 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Invariant Hopf 2-Cocycles for Affine Algebraic Groups | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Pavel Etingof, and Shlomo Gelaki. "Invariant Hopf 2-Cocycles for Affine Algebraic Groups." International Mathematics Research Notices (March 2018) © The Authors 2018 | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | International Mathematics Research Notices | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dc.date.updated | 2019-11-12T17:19:21Z | |
| dspace.date.submission | 2019-11-12T17:19:23Z | |