MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonsmooth differential-algebraic equations in chemical engineering

Author(s)
Stechlinski, Peter; Patrascu, Michael; Barton, Paul I
Thumbnail
DownloadAccepted version (265.7Kb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This article advocates a nonsmooth differential-algebraic equations (DAEs) modeling paradigm for dynamic simulation and optimization of process operations. A variety of systems encountered in chemical engineering are traditionally viewed as exhibiting hybrid continuous and discrete behavior. In many cases such discrete behavior is nonsmooth (i.e. continuous but nondifferentiable) rather than discontinuous, and is appropriately modeled by nonsmooth DAEs. A computationally relevant theory of nonsmooth DAEs (i.e. well-posedness and sensitivity analysis) has recently been established (Stechlinski and Barton, 2016a, 2017) which is suitable for numerical implementations that scale efficiently for large-scale dynamic optimization problems. Challenges posed by competing hybrid modeling approaches for process operations (e.g. hybrid automata) are highlighted as motivation for the nonsmooth DAEs approach. Several examples of process operations modeled as nonsmooth DAEs are given to illustrate their wide applicability before presenting the appropriate mathematical theory.
Date issued
2018-06
URI
https://hdl.handle.net/1721.1/122980
Department
Massachusetts Institute of Technology. Process Systems Engineering Laboratory
Journal
Computers & Chemical Engineering
Publisher
Elsevier BV
Citation
Stechlinski, Peter et al. "Nonsmooth differential-algebraic equations in chemical engineering." Computers & Chemical Engineering 114 (June 2018): 52-68 © 2017 Elsevier Ltd.
Version: Author's final manuscript
ISSN
0098-1354
Keywords
General Chemical Engineering, Computer Science Applications

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.