Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorKac, Victor
dc.contributor.authorValeri, Daniele
dc.date.accessioned2019-11-20T16:06:34Z
dc.date.available2019-11-20T16:06:34Z
dc.date.issued2018-06
dc.date.submitted2017-05
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttps://hdl.handle.net/1721.1/122981
dc.description.abstractWe prove that any classical affine W-algebra W (g, f) , where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.en_US
dc.language.isoen
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-018-3142-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.subjectMathematical Physicsen_US
dc.subjectStatistical and Nonlinear Physicsen_US
dc.titleClassical Affine W -Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebrasen_US
dc.typeArticleen_US
dc.identifier.citationDe Sole, Alberto et al. "Classical Affine W -Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras." Communications in Mathematical Physics 360, 3 (June 2018): 851-918 © 2019 Springer Nature Switzerland AG.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-14T16:14:13Z
dspace.date.submission2019-11-14T16:14:18Z
mit.journal.volume360en_US
mit.journal.issue3en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record