Show simple item record

dc.contributor.authorZhou, Bolei
dc.contributor.authorLapedriza Garcia, Agata
dc.contributor.authorKhosla, Aditya
dc.contributor.authorOliva, Aude
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2019-11-20T17:18:38Z
dc.date.available2019-11-20T17:18:38Z
dc.date.issued2017-07-04
dc.identifier.issn0162-8828
dc.identifier.issn2160-9292
dc.identifier.issn1939-3539
dc.identifier.urihttps://hdl.handle.net/1721.1/122983
dc.description.abstractThe rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems. Keywords: Scene classification; visual recognition; deep learning; deep feature; image dataseten_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1016862)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1524817)en_US
dc.description.sponsorshipUnited States. Assistant Secretary of Defense for Research and Engineering. Basic Research Office (United States. Office of Naval Research (Grant N00014-16-1-3116)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://doi.org/10.1109/tpami.2017.2723009en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePlaces: A 10 Million Image Database for Scene Recognitionen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Bolei et al. "Places: A 10 Million Image Database for Scene Recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 6 (June 2018): 1452-1464 © 2017 Institute of Electrical and Electronics Engineersen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-07-11T17:20:57Z
dspace.date.submission2019-07-11T17:20:59Z
mit.journal.volume40en_US
mit.journal.issue6en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record