MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergence of three-dimensional order and structure in growing biofilms

Author(s)
Hartmann, Raimo; Singh, Praveen K.; Pearce, Philip; Mok, Rachel; Song, Boya; Díaz-Pascual, Francisco; Dunkel, Joern; Drescher, Knut; ... Show more Show less
Thumbnail
DownloadAccepted version (2.286Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Surface-attached bacterial biofilms are self-replicating active liquid crystals and the dominant form of bacterial life on Earth 1–4 . In conventional liquid crystals and solid-state materials, the interaction potentials between the molecules that comprise the system determine the material properties. However, for growth-active biofilms it is unclear whether potential-based descriptions can account for the experimentally observed morphologies, and which potentials would be relevant. Here, we have overcome previous limitations of single-cell imaging techniques 5,6 to reconstruct and track all individual cells inside growing three-dimensional biofilms with up to 10,000 individuals. Based on these data, we identify, constrain and provide a microscopic basis for an effective cell–cell interaction potential, which captures and predicts the growth dynamics, emergent architecture and local liquid-crystalline order of Vibrio cholerae biofilms. Furthermore, we show how external fluid flows control the microscopic structure and three-dimensional morphology of biofilms. Our analysis implies that local cellular order and global biofilm architecture in these active bacterial communities can arise from mechanical cell–cell interactions, which cells can modulate by regulating the production of particular matrix components. These results establish an experimentally validated foundation for improved continuum theories of active matter and thereby contribute to solving the important problem of controlling biofilm growth.
Date issued
2018-11
URI
https://hdl.handle.net/1721.1/123091
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Physics
Publisher
Springer Science and Business Media
Citation
Hartmann, Raimo et al. "Emergence of three-dimensional order and structure in growing biofilms." Nature Physics 15, 3 (November 2015): 251–256 © 2018 The Author(s)
Version: Author's final manuscript
ISSN
1745-2473
1745-2481

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.