MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bouncing droplet dynamics above the Faraday threshold

Author(s)
Tambasco, Lucas; Pilgram, J. J.; Bush, John W. M.
Thumbnail
DownloadPublished version (1.795Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present the results of an experimental investigation of the dynamics of droplets bouncing on a vibrating fluid bath for forcing accelerations above the Faraday threshold. Two distinct fluid viscosity and vibrational frequency combinations (20 cS-80 Hz and 50 cS-50 Hz) are considered, and the dependence of the system behavior on drop size and vibrational acceleration is characterized. A number of new dynamical regimes are reported, including meandering, zig-zagging, erratic bouncing, coalescing, and trapped regimes. Particular attention is given to the regime in which droplets change direction erratically and exhibit a dynamics akin to Brownian motion. We demonstrate that the effective diffusivity increases with vibrational acceleration and decreases with drop size, as suggested by simple scaling arguments.
Date issued
2018-09
URI
https://hdl.handle.net/1721.1/123102
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Chaos
Publisher
AIP Publishing
Citation
Tambasco, L. D. et al. "Bouncing droplet dynamics above the Faraday threshold." Chaos 28 (March 2018): 096107 © 2018 Author(s)
Version: Final published version
ISSN
1054-1500
1089-7682

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.