MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computer-generated isotope model achieves experimental accuracy of filiation for position-specific isotope analysis

Author(s)
Goldman, Mark Jacob; Vandewiele, Nick; Ono, Shuhei; Green Jr, William H
Thumbnail
DownloadAccepted version (681.8Kb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Position-specific isotope analysis (PSIA) can aid in understanding the origins of molecules. Destructive PSIA requires a model to track isotope substitution through reaction pathways. We present a general method based on the Reaction Mechanism Generator software to construct quantitative kinetic models with atom-specific isotope tracking and kinetic isotope effects during thermal decomposition of model compounds. A propane mechanism produced with this method is compared to experiments. Without tuning kinetic or thermodynamic parameters to experimental data, the mechanism replicated, within experimental uncertainty, the relationship between the parent molecule's position-specific values and the fragments' enrichments. These isotope-specific models can serve as an in silico platform to quantitatively assess secondary isotopic reactions which can scramble position-specific enrichments, design and optimize experimental conditions, and test feasibility of PSIA for new compounds. The proposed methodology creates new opportunities for applications in isotope analysis for a range of chemical compounds. Keywords: Kinetic isotope effect; Symmetry; Degeneracy; Isotopologue; Enrichment; Automated mechanism generation
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/123303
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Chemical Geology
Publisher
Elsevier BV
Citation
Goldman, Mark Jacob et al. "Computer-generated isotope model achieves experimental accuracy of filiation for position-specific isotope analysis." Chemical Geology 514 (June 2019): 1-9 © 2019 Elsevier B.V.
Version: Author's final manuscript
ISSN
0009-2541

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.