MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning to Plan with Logical Automata

Author(s)
Araki, Brandon; Vodrahalli, Kiran; Leech, Thomas; Vasile, Cristian-Ioan; Donahue, Mark D.; Rus, Daniela L; ... Show more Show less
Thumbnail
Downloadp64.pdf (3.073Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper introduces the Logic-based Value Iteration Network (LVIN) framework, which combines imitation learning and logical automata to enable agents to learn complex behaviors from demonstrations. We address two problems with learning from expert knowledge: (1) how to generalize learned policies for a task to larger classes of tasks, and (2) how to account for erroneous demonstrations. Our LVIN model solves finite gridworld environments by instantiating a recurrent, convolutional neural network as a value iteration procedure over a learned Markov Decision Process (MDP) that factors into two MDPs: a small finite state automaton (FSA) corresponding to logical rules, and a larger MDP corresponding to motions in the environment. The parameters of LVIN (value function, reward map, FSA transitions, large MDP transitions) are approximately learned from expert trajectories. Since the model represents the learned rules as an FSA, the model is interpretable; since the FSA is integrated into planning, the behavior of the agent can be manipulated by modifying the FSA transitions. We demonstrate these abilities in several domains of interest, including a lunchboxpacking manipulation task and a driving domain.
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/123310
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Lincoln Laboratory
Journal
Robotics: Science and Systems 2019
Publisher
Robotics: Science and Systems Foundation
Citation
Araki, Brandon et al. "Learning to Plan with Logical Automata." Robotics: Science and Systems 2019, June 2019, Freiburg, Germany, Robotics: Science and Systems Foundation, June 2019
Version: Author's final manuscript
ISBN
9780992374754

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.