Molecular beam epitaxy growth of antiferromagnetic Kagome metal FeSn
Author(s)
Inoue, Hisashi; Han, Minyong; Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph
DownloadPublished version (1.453Mb)
Terms of use
Metadata
Show full item recordAbstract
FeSn is a room-temperature antiferromagnet expected to host Dirac fermions in its electronic structure. The interplay of the magnetic degree of freedom and the Dirac fermions makes FeSn an attractive platform for spintronics and electronic devices. While stabilization of thin film FeSn is needed for the development of such devices, there exist no previous reports of epitaxial growth of single crystalline FeSn. Here, we report the realization of epitaxial thin films of FeSn (001) grown by molecular beam epitaxy on single crystal SrTiO3 (111) substrates. By combining X-ray diffraction, electrical transport, and torque magnetometry measurements, we demonstrate the high quality of these films with the residual resistivity ratio ρ xx (300 K) / ρ xx (2 K) = 24 and antiferromagnetic ordering at T N = 353 K. These developments open a pathway to manipulate the Dirac fermions in FeSn by both magnetic interactions and the electronic field effect for use in antiferromagnetic spintronics devices.
Date issued
2019-08Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Applied Physics Letters
Publisher
AIP Publishing
Citation
Inoue, Hisashi et al. "Molecular beam epitaxy growth of antiferromagnetic Kagome metal FeSn." Applied Physics Letters 115, 7 (August 2019): 072403 © 2019 Author(s)
Version: Final published version
ISSN
0003-6951
1077-3118