Show simple item record

dc.contributor.authorHarwath, David F.
dc.contributor.authorRecasens, Adria
dc.contributor.authorSuris Coll-Vinent, Didac
dc.contributor.authorChuang, Galen
dc.contributor.authorTorralba, Antonio
dc.contributor.authorGlass, James R
dc.date.accessioned2020-01-20T17:03:22Z
dc.date.available2020-01-20T17:03:22Z
dc.date.issued2018-10-06
dc.date.submitted2018-04-04
dc.identifier.isbn9783030012304
dc.identifier.isbn9783030012311
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/123476
dc.description.abstractIn this paper, we explore neural network models that learn to associate segments of spoken audio captions with the semantically relevant portions of natural images that they refer to. We demonstrate that these audio-visual associative localizations emerge from network-internal representations learned as a by-product of training to perform an image-audio retrieval task. Our models operate directly on the image pixels and speech waveform, and do not rely on any conventional supervision in the form of labels, segmentations, or alignments between the modalities during training. We perform analysis using the Places 205 and ADE20k datasets demonstrating that our models implicitly learn semantically-coupled object and word detectors. Keywords: vision and language; sound; speech; convolutional networks; multimodal learning; unsupervised learningen_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-01231-1_40en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleJointly Discovering Visual Objects and Spoken Words from Raw Sensory Inputen_US
dc.typeBooken_US
dc.identifier.citationHarwath, David et al. "Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input." Computer Vision – ECCV 2018, September 8–14, 2018, Munich, Germany, edited by V. Ferrari et al., Springer, 2018en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalComputer Vision – ECCV 2018en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T17:10:06Z
dspace.date.submission2019-07-11T17:10:08Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record