MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-Time Object Pose Estimation with Pose Interpreter Networks

Author(s)
Wu, Jimmy; Zhou, Bolei; Russell, Rebecca; Kee, Vincent; Wagner, Syler; Hebert, Mitchell; Torralba, Antonio; Johnson, David M.S.; ... Show more Show less
Thumbnail
DownloadAccepted version (3.172Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this work, we introduce pose interpreter networks for 6-DoF object pose estimation. In contrast to other CNN-based approaches to pose estimation that require expensively annotated object pose data, our pose interpreter network is trained entirely on synthetic pose data. We use object masks as an intermediate representation to bridge real and synthetic. We show that when combined with a segmentation model trained on RGB images, our synthetically trained pose interpreter network is able to generalize to real data. Our end-to-end system for object pose estimation runs in real-time (20 Hz) on live RGB data, without using depth information or ICP refinement. Keywords: pose estimation; image segmentation; three-dimensional displays; quaternions; real-time systems; training; task analysis
Date issued
2019-01-07
URI
https://hdl.handle.net/1721.1/123478
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Publisher
IEEE
Citation
Wu, Jimmy et al. "Real-Time Object Pose Estimation with Pose Interpreter Networks." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 1-5, 2018, Madrid, Spain, IEEE, 2019
Version: Author's final manuscript
ISBN
9781538680940
9781538680933
9781538680957
ISSN
2153-0866
2153-0858

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.