Show simple item record

dc.contributor.authorZhao, Hang
dc.contributor.authorPuig Fernandez, Xavier
dc.contributor.authorZhou, Bolei
dc.contributor.authorFidler, Sanja
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2020-01-20T18:41:32Z
dc.date.available2020-01-20T18:41:32Z
dc.date.issued2017-12-25
dc.identifier.isbn9781538610329
dc.identifier.isbn9781538610336
dc.identifier.issn2380-7504
dc.identifier.urihttps://hdl.handle.net/1721.1/123479
dc.description.abstractRecognizing arbitrary objects in the wild has been a challenging problem due to the limitations of existing classification models and datasets. In this paper, we propose a new task that aims at parsing scenes with a large and open vocabulary, and several evaluation metrics are explored for this problem. Our approach is a joint image pixel and word concept embeddings framework, where word concepts are connected by semantic relations. We validate the open vocabulary prediction ability of our framework on ADE20K dataset which covers a wide variety of scenes and objects. We further explore the trained joint embedding space to show its interpretability. Keywords: streaming media; vocabulary; training; semantics; predictive models; visualizationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1524817)en_US
dc.description.sponsorshipSamsung Electronics Co. (Grant 1524817)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/iccv.2017.221en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleOpen Vocabulary Scene Parsingen_US
dc.typeArticleen_US
dc.identifier.citationZhao, Hang et al. "Open Vocabulary Scene Parsing." 2017 IEEE International Conference on Computer Vision (ICCV), October 2017, Venice, Italy, Institute of Electrical and Electronics Engineers (IEEE), December 2017 © 2017 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journal2017 IEEE International Conference on Computer Vision (ICCV)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T16:43:19Z
dspace.date.submission2019-07-11T16:43:20Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record