dc.contributor.author | Gorin, Vadim | |
dc.contributor.author | Shkolnikov, Mykhaylo | |
dc.date.accessioned | 2020-01-20T22:00:46Z | |
dc.date.available | 2020-01-20T22:00:46Z | |
dc.date.issued | 2018-06 | |
dc.date.submitted | 2016-06 | |
dc.identifier.issn | 0091-1798 | |
dc.identifier.issn | 2168-894X | |
dc.identifier.uri | https://hdl.handle.net/1721.1/123482 | |
dc.description.abstract | We determine the operator limit for large powers of random symmetric tridiagonal matrices as the size of the matrix grows. The result provides a novel expression in terms of functionals of Brownian motions for the Laplace transform of the Airy β process, which describes the largest eigenvalues in the β ensembles of random matrix theory. Another consequence is a Feynman-Kac formula for the stochastic Airy operator of Edelman-Sutton and Ramirez-Rider-Virag. As a side result, we find that the difference between the area underneath a standard Brownian excursion and one half of the integral of its squared local times is a Gaussian random variable. Keywords: Airy point process; Brownian bridge; Brownian excursion; Dumitriu–Edelman model; Feynman–Kac formula; Gaussian beta ensemble; intersection local time; moment method; path transformation; quantile transform; random matrix soft edge; random walk bridge; stochastic Airy operator; strong invariance principle; trace formula; Vervaat transform | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1407562) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-1664619) | en_US |
dc.language.iso | en | |
dc.publisher | Institute of Mathematical Statistics | en_US |
dc.relation.isversionof | https://doi.org/10.1214/17-aop1229 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.subject | Statistics, Probability and Uncertainty | en_US |
dc.subject | Statistics and Probability | en_US |
dc.title | Stochastic Airy semigroup through tridiagonal matrices | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Gorin, Vadim and Shkolnikov, Mykhaylo. "Stochastic Airy semigroup through tridiagonal matrices." Annals of Probability, 46, no.4, (2018): 2287--2344 © Institute of Mathematical Statistics, 2018. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | The Annals of Probability | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2019-11-13T15:21:07Z | |
dspace.date.submission | 2019-11-13T15:21:11Z | |
mit.journal.volume | 46 | en_US |
mit.journal.issue | 4 | en_US |
mit.metadata.status | Complete | |