Show simple item record

dc.contributor.authorGorin, Vadim
dc.contributor.authorShkolnikov, Mykhaylo
dc.date.accessioned2020-01-20T22:00:46Z
dc.date.available2020-01-20T22:00:46Z
dc.date.issued2018-06
dc.date.submitted2016-06
dc.identifier.issn0091-1798
dc.identifier.issn2168-894X
dc.identifier.urihttps://hdl.handle.net/1721.1/123482
dc.description.abstractWe determine the operator limit for large powers of random symmetric tridiagonal matrices as the size of the matrix grows. The result provides a novel expression in terms of functionals of Brownian motions for the Laplace transform of the Airy β process, which describes the largest eigenvalues in the β ensembles of random matrix theory. Another consequence is a Feynman-Kac formula for the stochastic Airy operator of Edelman-Sutton and Ramirez-Rider-Virag. As a side result, we find that the difference between the area underneath a standard Brownian excursion and one half of the integral of its squared local times is a Gaussian random variable. Keywords: Airy point process; Brownian bridge; Brownian excursion; Dumitriu–Edelman model; Feynman–Kac formula; Gaussian beta ensemble; intersection local time; moment method; path transformation; quantile transform; random matrix soft edge; random walk bridge; stochastic Airy operator; strong invariance principle; trace formula; Vervaat transformen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1407562)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1664619)en_US
dc.language.isoen
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttps://doi.org/10.1214/17-aop1229en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.subjectStatistics, Probability and Uncertaintyen_US
dc.subjectStatistics and Probabilityen_US
dc.titleStochastic Airy semigroup through tridiagonal matricesen_US
dc.typeArticleen_US
dc.identifier.citationGorin, Vadim and Shkolnikov, Mykhaylo. "Stochastic Airy semigroup through tridiagonal matrices." Annals of Probability, 46, no.4, (2018): 2287--2344 © Institute of Mathematical Statistics, 2018.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalThe Annals of Probabilityen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-13T15:21:07Z
dspace.date.submission2019-11-13T15:21:11Z
mit.journal.volume46en_US
mit.journal.issue4en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record